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ABSTRACT  
Multimodal Container Terminals are complex systems which require careful planning and 
control in order to perform efficiently.  The containers may require being stacked in multiple 
levels to maximise storage usage.  The position of the container in the storage area affects the 
handling time, and this time dramatically increases with rehandling jobs that must be 
performed to access that container.  A model for minimising transfer tardiness in the storage 
area is developed in this paper.  A computer program based on meta-heuristic and simulation 
techniques are designed and implemented to optimise non-trivial problems.  A performance 
and sensitivity analysis are carried out and suggestions are made for future research in this 
area. 
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1.  INTRODUCTION 
Multimodal Container Terminals (MMCT) are complex systems which require careful 
planning and control in order to perform efficiently.  The containers may require being 
stacked in multiple levels to maximise storage usage. The position of the container in the 
storage area will affect the handling time, and this time will dramatically increase with 
rehandling jobs that must be performed to access that container.  Synchronisation between the 
various sections of the terminal must also be achieved in order to prevent bottlenecks in the 
system and the subsequent delays that will occur as a result. 

The problem that will be modelled and solved in this paper will be the optimisation of 
the storage and handling of containers in the storage area of the MMCT.  Several sub-
problems must be solved when optimising the storage and handling of containers, including 
 Where is the most optimal position in the storage area to store each container, so that 

the least amount of rehandling is performed, and the container is delivered to its destination 
by its scheduled departure time?  Usually the best position is closest to the departure location, 
so that the container can be stored as long as possible, and quickly moved to the location 
when needed.  However, there will many containers that will depart from the same location, 
and they cannot all be stored in exactly the same position, so decisions must be made to work 
out how far from the optimal position the container should be stored while still allowing for a 
quick departure. 
 Which machines should be allocated to each container to move it between the 

locations in the storage area, and when should they be moved?  The machines can only carry a 
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limited number of containers at a time, usually only one, so decisions must be made to make 
sure the work is balanced evenly between the machines while still delivering the containers to 
their destinations on time. 
 How are containers dealt with that need to be moved out of the way to reach other 

containers?  Some models make use of a temporary space where the containers are stored 
while the containers below them are removed, and then they are placed back onto the stack.  
Other models, including the model developed in this paper, move the containers to another 
position in the storage bay. 
 How is traffic dealt with in the storage area, including both within a location and 

between the various locations? 

A model for minimising the rehandling and transfer tardiness in the storage are was 
developed in this paper. A computer program based on Operations Research techniques was 
designed and implemented to optimise non-trivial problems. A performance and sensitivity 
analysis was carried out and suggestions are made for future research in this area. 

 

2.  LITERATURE REVIEW 
Over the last decade and a half, there has been a substantial amount of research done on the 
study of operations at container terminals. The following section reviews the important papers 
that have contributed to this field of study. 

Vis and Koster (2003) and Steenken, Voss and Stahlbock (2004) have both presented 
a comprehensive review on the literature on recent research related to container terminals. Vis 
and Koster (2003) separated the problems involved in operating a container terminal into 
distinct categories, including unloading and loading of the ship, stacking of containers and 
various other categories. They concluded that in general it is considered necessary to simplify 
the problem due to its complexity before using analytical models, while on the other hand, 
simulation models may be used, however these are generally time-consuming to develop and 
test. They also suggested that more work could be done on joint optimisation of several 
different types of handling equipment, as most of the papers reviewed focused on single types 
of equipment. Steenken, Voss and Stahlbock (2004) first provide a historical overview of 
containers and container terminal operations. They then classified the different types of 
handling equipment involved in container terminal operations, as well as providing references 
to relevant literature. Finally they categorised the various processes involved in container 
terminal logistics and provided references to literature containing information on the various 
optimisation methods that have been used to solve these logistical problems. They concluded 
that there is a need for integrated optimisation between the different areas of the container 
terminal, as currently there are only a few studies on integrated problems. 

There have been quite a large number of papers published on stacking containers in 
the storage area. Early work was done by Chung, Randhawa and McDowell (1988) where 
they proposed a methodology of utilizing a buffer space as a method to increase the utilization 
of the equipment and reduce the total container loading time. They developed a simulation 
model to compare the proposed methodology with the then-current practice at the Port of 
Portland.  Cao and Uebe (1993) presented an algorithm for solving a special capacitated 
multi-commodity p-median transportation problem (CMPMTP), which arises in container 
terminal management. They extended the existing work by applying a Lagrangean relaxation 
to the CMPMTP, and used a heuristic branch-and-bound algorithm to search for a better 
solution. De Castilho and Daganzo (1993) presented methods for measuring the amount of 
handling effort required when two basic strategies are adopted, one that tries to keep all stacks 
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the same size, and the other that segregates containers according to arrival time. Taleb-
Ibrahimi, De Castilho and Daganzo (1993) describes handling and storage strategies for 
export containers at marine terminals and quantifies their performance according to the 
amount of space and number of handling moves they require. 

Kozan and Preston (1999) use Genetic Algorithm techniques to reduce container 
handling/transfer times at the multimodal terminals. When containers are stacked to multi 
levels or high, more handling time is needed to retrieve a container at the lower level of the 
stack.  Total throughput time of containers as a function of cranes, forklifts/highstackers and 
terminal transfer trucks are used to measure the performance of the system.  Kozan (2000) 
discusses the major factors influencing the transfer efficiency of container terminals and a 
network model is designed to analyse container progress in the system to minimize the total 
handling and travelling time of containers.  This paper considers various types of handling 
and transfer equipment as well as the location of containers in the yard.   

Preston and Kozan (2001a) determine an optimal storage strategy for various container 
handling schedules. They minimise the ship turn around time of container ships by genetic 
algorithms and design a scheduling model and applied to container terminals taking into 
account factors such as container handling equipment, labour resources, storage capacities and 
terminal layout.  Major factors influencing container transfer efficiency are analysed to 
optimise resource usage resulting in lower operating costs while achieving a desired level of 
customer service.  Similarly optimising the storage location to match a particular transfer 
schedule is developed by Preston & Kozan (2001b) in a later study and some improvement 
could be gained.   

Chen (1999) presented the findings of a study into yard operations in the container 
terminal, focusing on what effect unproductive container movements has on the overall 
efficiency of the terminal.  Kim and Kim (1999a) considered how to allocate storage space for 
import containers, by analysing cases where the arrival rate of containers is constant, cyclic 
and dynamic. Spaces are allocated for each arriving vessel to minimise the expected total 
number of rehandles, and mathematical models and solution procedures were suggested for 
obtaining the optimal solution. Kim and Kim (1999b) continued their work from Kim and 
Kim (1997), presenting a more in-depth study of how to optimally route transfer cranes in a 
container yard during operations of export containers at port terminals.   

Kim, Park and Ryu (2000) proposed a methodology for determining the storage 
location of an arriving export container considering its weight. They formulated a dynamic 
programming model to determine the storage location to minimise the number of relocation 
movements expected for the loading operation. A decision tree was also developed from the 
set of optimal solutions to support real time decisions.  Chung, Li and Lin (2002) considered 
the problem of scheduling the movements of cranes in a container storage yard to minimise 
the total unfinished workload at the end of each time period. A mixed integer linear program 
was formulated and a new solution approach called the successive piecewise-linear 
approximation method was developed.  Kim and Kim (2002) discuss a method of determining 
the optimal amount of storage space and the optimal number of transfer cranes for handling 
import containers. A cost model was developed that consisted of the space const, investment 
cost of transfer cranes, and operating cost of transfer cranes and trucks. A deterministic model 
was developed for the minimisation of the cost to the terminal operator, and a stochastic 
model was developed for the minimisation of cost to both the terminal operator and the 
customers. Kim and Park (2002) discussed how to allocate space for outbound containers 
arriving at a storage yard, where the main objectives are to utilize space efficiently and to 
make loading operations more efficient. A mixed integer linear program was formulated, and 
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two heuristic algorithms were suggested based on the duration-of-stay of containers and the 
sub-gradient optimisation technique. Zhang et. al. (2002) addresses the crane deployment 
problem, where given the forecasted workload of each block in the storage yard in each 
period of a day, the objective is to find the times and routes of crane movements among 
blocks so that the total delayed workload in the yard is minimised. A mixed integer 
programming model was formulated and solved by Lagrangean relaxation. 

Kim, Kang and Ryu (2004) applied a beam search algorithm to solve the load-
sequencing problem in port container terminals, where the operational efficiency of transfer 
cranes and quay cranes were maximised while satisfying various constraints on stacking 
containers onto vessels. Ng (2005) examined the problem of scheduling multiple yard cranes 
to perform a given set of jobs with different ready times in a yard zone with only one bi-
directional travelling lane. An integer program was formulated, and then a dynamic 
programming-based heuristic was developed to solve the problem. 

 

3.  MODEL FORMULATION 
The notation in the model is defined as follows: 

Constants 
H ( L ) : Height (Length) of a standard container 

Hv  ( ) : The horizontal (vertical) velocity of the machines Vv
maxh  : The maximum number of containers allowed to be stacked in a storage bay. 

 
Location Variables 
L  : The set of all locations 

TSL  ( ) : The set of all transfer stations (storage bays) SBL
A
cl  ( ) : The arrival (departure) transfer station for container c D

cl
S
cl  : The storage bay that container c will be stored. 

ln  : The number of containers that can be stored horizontally in location l 

lU  : The storage capacity of location l 

21 ,llD  : The shortest distance between locations  and  1l 2l

21 ,llE  : 0 if the closest end of location  to location  is the end near stack 1 of location 
, 1 otherwise. 

1l 2l

1l
 
Container Variables 
C  : The set of all containers 

A
cx  ( ) : The stack that container c is placed in the arrival (departure) transfer location  

( ) 

D
cx A

cl
D
cl

S
tcx ,  ( ) : The stack (level) that container c is stored in storage bay  at time t S

tcy ,
S
cl

tyxlcp ,,,,  : 1 if container c is stored at position ( )yx,  in location l at time t, 0 otherwise. 
 
Machine Variables 
M  : The set of machines used in the storage area 
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A
cm  : Machine assigned to carry container c from its arrival transfer station  to 

storage bay . 

A
cl

S
cl

D
cm  : Machine assigned to carry container c from storage bay  to its departure station 

. 

S
cl

D
cl

tlmq ,,  : 1 if machine m is in location l at time t, 0 otherwise. 

tcmr ,,  : 1 if machine m is carrying container c at time t, 0 otherwise. 
 
Job Variables 

mJ  : The set of jobs that machine m has been allocated to perform 
A
mJ  ( ) : The set of arrival (departure) jobs that machine m has been allocated to perform D

mJ
A
cj  : The job to move container c from arrival transfer station  to storage bay  A

cl
S
cl

D
cj  : The job to move container c from storage bay  to departure transfer station  S

cl
D
cl

R
jC  : The set of containers that must be rehandled in job j 

T
jmd ,  : The total distance that machine m travelled for job j. 

 
Event Variables 

SAT
ct  : The scheduled arrival time of container c at its arrival transfer station  A

cl
AAT
ct  : The time that container is placed down in the arrival transfer station  A

cl
SDT
ct  : The scheduled departure time of container c from its departure transfer station  D

cl
DT
ct  : The actual departure time of container c from its departure transfer station  D

cl
PUCA
ct  : The time that container c is picked up from the arrival transfer station  A

cl
PDCD
ct  : The time that container c is placed down in the departure transfer station . D

cl
PUCS
ct  : The time that container c is picked up from the storage bay  to be taken to the 

departure transfer station . 

S
cl

D
cl

PDCS
ct  : The time that container c is place down in the storage bay  after leaving the 

arrival transfer station . 

S
cl

A
cl

PUCR
jct ,  : The time that container c is picked up for rehandling in order to reach job 

container j 
PDCR

jct ,  : The time that container c is placed down after being rehandled in order to reach 
job container j 

SJ
jmt ,  : The time that machine m starts job j 

MENL
jlmt ,,  : The time that machine m enters location l for job j 

MEXL
jlmt ,,  : The time that machine m exits location l for job j 

 
There are a number of assumptions that were made in order to simplify the model. 

They are as follows: 
 Only standard 20 foot containers are considered in this model. 
 Only straddle carriers will be considered in the model. 
 The storage bays consist of only one row each. 
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 The horizontal and vertical velocity of the vehicles is considered to be constant. 
 The berths, TTA, ROIT and RAIT are not explicitly included in this model. 
 The straddle carriers always take the shortest distance between the storage bays and 

transfer stations, and delays caused by traffic are ignored. 
 The containers that are being rehandled in the storage bay are moved to another stack and 

left there until they depart from the storage bay or rehandled in a future job. 
 The stacks in the transfer stations are only one level high. 
 The straddle carriers do not move horizontally when lifting or dropping a container and 

that when moving horizontal it carries the container at the highest possible level. 

 
The model’s objective function and constraints are defined as follows: 

Minimise           (1) ∑∑
∈ ∈Mm Jj

T
jmd ,

Equation (1) calculates the total distance travelled by all of the machines and 
minimises this value. This will also minimise the amount of rehandling performed as well as 
help with maintaining the due dates for the containers. 

 

Subject to 

Capacity Constraints 

ll nhU max =           (2) SBLl ∈∀

ll nU  =           (3) TSLl ∈∀

l
Cc

n

x

h

y
tyxlc Up

l

≤∑∑∑
∈ = =1 1

,,,,

max

         (4) SBLlt ∈∀ ,

l
Cc

n

x
txlc Up

l

≤∑∑
∈ =1

,1,,,          (5) TSLlt ∈∀ ,

Equation (2) and (3) calculates the capacity of the storage bays and locations. 
Equations (4) and (5) ensure that the capacity of these locations is not exceeded at any time. 

 

Container Constraints 

1,,
1

,1,,,
1 1

,,,,

max

≤++ ∑∑∑∑∑∑
∈∈ =∈ = = Mm

tcm
Ll

n

x
txlc

Ll

n

x

h

y
tyxlc rpp

TS

l

SB

l

 Cct ∈∀ ,     (6) 

1,,,, ≤∑
∈Cc

tyxlcp     SBLlt ∈∀ , , lnx ≤≤1 , max1 hy ≤≤     (7) 

1,1,,, ≤∑
∈Cc

txlcp     TSLlt ∈∀ , , lnx ≤≤1       (8) 

∑∑
∈

−
∈

≤
Cc

tyxlc
Cc

tyxlc pp ,1,,,,,,,   SBLlt ∈∀ , , lnx ≤≤1 ,  max1 hy ≤<     (9) 
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∑
=

=
ln

x
txlc

A
c xpx

1
,1,,,   , ,      (10) Cc∈∀ AAT

ctt = A
cll =

∑
=

=
ln

x
txlc

D
c xpx

1
,1,,,   , ,      (11) Cc∈∀ PDCD

ctt = D
cll =

∑ ∑
= =

=
ln

x

h

y
tyxlc

S
tc pxx

1 1
,,,,,

max

  ,       (12) Cct ∈∀ , S
cll =

∑ ∑
= =

=
max

1 1
,,,,,

h

y

n

x
tyxlc

S
tc

l

pyy   ,       (13) Cct ∈∀ , S
cll =

Equation (6) ensures that a container can only be in one place at a time, either in a 
location or being carried by a machine. Equation (7) and (8) ensures that there is at most one 
container in each position in the storage bays and transfer stations, while Equation (9) ensures 
that if containers in the storage bay are not on the bottom level, they must have a container 
beneath them. Equations (9) to (13) retrieves the positions the containers are stored in the 
transfer stations and the storage bays. 

Machine Constraints 

1,, ≤∑
∈Mm

tlmq   Llt ∈∀ ,         (14) 

1,, ≤∑
∈Ll

tlmq   Mmt ∈∀ ,         (15) 

∑
∈

≤
Cc

tcmr 1,,   Mmt ∈∀ ,         (16) 

Equation (14) ensures that each location can have at most one machine occupying it at 
all times, while Equation (15) ensures that a machine cannot be in more than one location at a 
time. Equation (16) ensures that a machine is only carrying one container at a time. 

Event Constraints 
AAT
c

SAT
c tt ≤           (17) Cc∈∀

PUCA
c

AAT
c tt ≤           (18) Cc∈∀

( )PDCD
c

SDT
c

DT
c ttt ,max=         (19) Cc∈∀

PUCS
c

PUCR
jc

PDCS
c ttt << ,          (20) Cc∈∀

PUCS
c

PDCR
jc

PDCS
c ttt << ,          (21) Cc∈∀

SJ
jm

MEXL
klm tt ,,, <   mJjMm ∈∈∀ , , k is the job performed before j   (22) 

H
liSJ

jm
MENL

jim v
D

tt ,
,,, +≥  , , l is the location the machine is at before 

job j,            (23) 

A
mJjMm ∈∈∀ , A

cjjc =|

A
cli =
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( ) ( ){ }

VH

A
cki

A
ciliMENL

jim
PUCA
c v

Hh
v

LxExnE
tt max,,

,,

1
+

−+−
+=  , , A

mJjMm ∈∈∀ , A
cjjc =|

 l is the location the machine is at before job j,      (24) A
cli =

( ) ( ){ }
VH

A
cki

A
cikiPUCA

c
MEXL

jim v
Hh

v
LxExnE

tt max,,
,,

1
+

−+−
+=  , , , 

            (25) 

A
mJjMm ∈∈∀ , A

cjjc =| A
cli =

S
clk =

H
kiMEXL

jim
MENL

jkm v
D

tt ,
,,,, +≥  , , ,     (26) A

mJjMm ∈∈∀ , A
cjjc =| A

cli = S
clk =

( ) ( ){ } ( )
V

S
tc

H

S
tcik

S
tckikMENL

jkm
PDCS
c v

Hyh
v

LxExnE
tt ,max,,,,

,,

1 −
+

−+−
+=  , 

, , , t is the time c is placed down in the storage bay.   (27) 

A
mJjMm ∈∈∀ ,

A
cjjc =| A

cli = S
clk =

( ) ( )
V

S
tc

H

S
tck

S
tcPDCS

c
MEXL

jkm v
Hyh

v
Lxnx

tt ,max,,
,,

,min −
+

−
+=  , , , 

,           (28) 

A
mJjMm ∈∈∀ , A

cjjc =| A
cli =

S
clk = PDCS

ctt =

H
liSJ

jm
MENL

jim v
D

tt ,
,,, +≥  , , l is the location the machine is at before 

job j,            (29) 

D
mJjMm ∈∈∀ , D

cjjc =|

S
cli =

( ) ( ){ } ( )

( )
⎪
⎪
⎩

⎪⎪
⎨

⎧

−−
+

−
+

−
+

−+−
+

=
−−

− otherwise
2

rehandled be first to is 
1

,,1max,1,
,1

,max,,,,
,,

,

V

S
tb

S
sb

H

S
sb

S
tcPDCR

jb

V

S
tb

H

S
tcli

S
tciliMENL

jim
PUCR

jb

v
Hyyh

v

Lxx
t

b
v

Hyh
v

LxExnE
t

t

R
j

D
m CbJjMm ∈∈∈∀ ,, , , , s is the time the previous rehandled container 

is placed down, l is the location the machine is at before job j,    (30) 

D
cjjc =| MENL

jimtt ,,=
S
cli =

 

( )
V

S
sb

S
tb

H

S
sb

S
tcPUCR

jb
PDCR

jb v
Hyyh

v

Lxx
tt ,,max,,

,,

2 −−
+

−
+=  , 

, , s is the time b is placed down.      (31) 

R
j

D
m CbJjMm ∈∈∈∀ ,,

D
cjjc =| MENL

jimtt ,,=

 

( )

( ) ( ){ } ( )
⎪
⎪
⎩

⎪⎪
⎨

⎧

−
+

−+−
+

−−
+

−
+

=

otherwise
1

exists 
2

,max,,,,
,,

,,max,,

V

S
tc

H

S
tcli

S
tciliMENL

jim

V

S
sb

S
tc

H

S
sb

S
tcPDCR

bPUCS
c

v
Hyh

v
LxExnE

t

b
v

Hyyh
v

Lxx
t

t  , 

, b is the container above c, , , l is the location the machine is at 

before job j,           (32) 

D
mJjMm ∈∈∀ ,

D
cjjc =| MENL

jimtt ,,= PDCR
jbts ,=

S
cli =
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( ) ( ){ } ( )
V

S
tc

H

S
tcki

S
tcikiPUCS

c
MEXL

jim v
Hyh

v
LxExnE

tt ,max,,,,
,,

1 −
+

−+−
+=  , 

, , ,         (33) 

D
mJjMm ∈∈∀ ,

D
cjjc =| S

cli = D
clk = MENL

jimtt ,,=

H
kiMEXL

jim
MENL

jkm v
D

tt ,
,,,, +≥  , , ,     (34) D

mJjMm ∈∈∀ , D
cjjc =| S

cli = D
clk =

( ) ( ){ }
VH

D
cik

D
ckikMENL

jkm
PDCD
c v

Hh
v

LxExnE
tt max,,

,,

1
+

−+−
+=  , , 

,            (35) 

D
mJjMm ∈∈∀ , D

cjjc =|

S
cli = D

clk =

( )
VH

D
ck

D
cPDCD

c
MEXL

jkm v
Hh

v
Lxnx

tt max
,,

,min
+

−
+=  , , , . 

            (36) 

D
mJjMm ∈∈∀ , D

cjjc =| S
cli = D

clk =

( )( ) ( ){ }
( ) ( ) ( ){ } HyhLxnxxExnE

LxEExnEEDDd
S

tc
S

tck
S

tc
S

tcik
S

tckik

A
ckili

A
cikilikiil

T
jm

,max,,,,,,

,,,,,,,

22,min1

2

−+−+−+−+

+−+−+++=

{ }  

A
mJjMm ∈∈∀ , , , l is the location the machine is at before job j,  , , 

           (37) 

A
cjjc =| A

cli = S
clk =

PDCS
ctt =

( )( ) ( ){ } ( )
( )

( ) ( ) ( ){ } HhLxnxxExnE

yyhHxxL

HyhLxEExnEEDDd

D
ck

D
c

D
cik

D
ckik

Cb

S
sb

S
tc

Cb

S
sb

S
tc

S
tc

S
tckili

S
tcikilikiil

T
jm

R
c

R
c

max,,

,,max,,

,max,,,,,,,,,

2,min1

22

2

+−+−+−+

−−+−+

−++−+−+++=

∑∑
∈∈

D
mJjMm ∈∈∀ , , , l is the location the machine is at before job j,  , , 

, s is the time that the rehandle containers were placed down after being picked up 
from the stack containing the job container       (38) 

D
cjjc =| S

cli = D
clk =

MENL
jimtt ,,=

Equation (17) ensures that a container is not placed in its arrival transfer station before 
its scheduled arrival time, while Equation (18) ensures that a container is not picked up from 
the arrival transfer station before it is placed down in the location. Equation (19) finds the 
departure time of each container. Equations (20) and (21) ensures that a container is first 
placed down in the storage bay, then rehandled for other jobs, then finally picked up from the 
storage bay. Equations (22) – (36) track the time of the events for a job, while Equations (37) 
and (38) track the distance travelled by the machine during a job. 

 

4.  SOLUTION TECHNIQUES  

Due to the timely nature of this problem, a good, near-optimal solution that is found in a 
reasonable amount of time is preferred to an optimal solution that would take an eternity to 
calculate. Therefore, a number of Meta-heuristic techniques have been implemented and 
tested on a benchmark problem. These techniques tested were Genetic Algorithm (GA), Tabu 
Search (TS), and a hybrid of TS and Simulated Annealing (SA), which will be named 
TabuSA for the remainder of this paper. 
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GA is part of the family of Evolutionary Algorithms, all of which take their 

philosophy from Darwin’s theory of natural selection and from genetics. Figure 1 outlines the 
GA process used in this paper. 

 
Figure 1.  Genetic Algorithm Process 

 

The GA begins with the creation of an initial group of solutions or chromosomes 
called a population, and this population forms the initial generation. The objective value or 
fitness of each solution is calculated, as well as their infeasibility, using an appropriate 
technique. If the termination criteria are met then the GA terminates. Otherwise a new 
generation is formed from this initial generation by performing the following process. Firstly, 
a specified number of the best solutions from the current generation are added to the new 
generation, which is known as Elitism. Once this is completed, pairs of chromosomes are 
chosen from the current generation, and combined using a crossover operation to generate 
children chromosomes, which are added to the new generation. In order to maintain some 
diversity in the population, these children chromosomes are then randomly mutated by 
altering some of the values in the solution. Finally, the fitness and infeasibility of these new 
chromosomes are calculated, and the process repeats itself until the termination criteria are 
met. 

Simulated Annealing has origins in the field of material science and physics, as it is 
similar to the physical annealing process of condensed matter. An initial solution is generated 
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either randomly or by using a constructive heuristic. This solution is set as the best solution. A 
group of solutions, called a neighbourhood, are obtained from the current solution by 
modifying it in a well-defined manner. The solution with the best objective value in the 
neighbourhood is found to be compared against the current solution and current best solution. 
If the new solution has a better objective value than the current solution, it will replace it, and 
if it is better than the best solution found so far, the new solution will become the best 
solution. However, if it has a worse fitness than the current solution, it will only replace the 
current solution with some probability. This probability, also known as a cooling parameter, 
gradually becomes smaller as the process continues towards termination. SA allows worse 
solutions to replace the current solution near the beginning of the annealing process, thus 
allowing the SA to move in and out of local minima, while providing the ability of refining 
the best solution towards the end of the annealing process. 

Tabu Search is similar to Simulated Annealing in that it can move in and out of local 
minima; however the decision of whether a solution should replace the current solution is 
determined by a list of tabu alterations or mutations. As with Simulated Annealing, Tabu 
Search begins with an initial solution that is set as the current best solution. A neighbourhood 
of solutions are obtained through the mutation of the current solution. The best solution from 
this neighbourhood is chosen to replace the current solution. Once the new solution has 
replaced the current solution, the mutation that created the new solution from the old solution 
is added to a list of tabu mutations that can not be performed in future iterations. Usually for 
storage purposes, the tabu list is of a finite size, and once it becomes full, the oldest tabu 
mutation is removed from the list to allow a new tabu mutation to be added. The tabu list is 
used to prevent cycles from occurring when in one iteration, the tabu search moves away from 
a local minima, then in a future iteration, the tabu search will return to that local minima. 
Since, in practice the tabu list is finite, cycles that are longer than the list size may still occur. 

One of the disadvantages of using Tabu Search is that the probability of choosing a 
worse solution is not guaranteed to reduce towards the end of the search process. In order to 
guarantee this reduction, TabuSA was developed in this paper. The tabu-list from Tabu 
Search is used in conjunction with the cooling parameter from Simulated Annealing. This 
combines the tabu-list’s ability to prevent cycles from occurring with the cooling parameter’s 
ability to refine the solution as more iterations are performed. 

The optimisation program was implemented in C++ using object-oriented techniques.  
The representation of a solution to the model was developed to be used in the crossover and 
mutation operations of the GA, TS and TS/SA hybrid without too much trouble, while still 
providing enough information to simulate and calculate the objective value and infeasibility 
of the solution. The solution is stored in an array of integers which are divided into groups 
that represent different variables in the model. 

The majority of the running time of the optimisation program is spent running 
simulations for the calculation of the fitness and infeasibility of solutions.  The simulation 
uses the values from the solution representation to initialise the various objects, and then 
iterates through the algorithm until all containers have passed the storage area. 

 

5.  RESULTS 
The computer program was run on three test cases in order to compare the 

performance of the various solution techniques, as well as perform a sensitivity analysis. Each 
test case consisted of the following: 
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• 100 containers, with random inter-arrival times that were obtained from an 

exponential distribution, and random departure times obtained from a triangular 
distribution. 

• 4 Transfer Stations, each with a capacity of 8 containers 

• 20 Storage Bays, each with a capacity of 15 containers, 5 containers long by 3 
containers high. 

 

Figure 2 illustrates the layout that was used in the test cases. The tests were run with 2, 
4, 6, 8 and 10 straddle carriers, to see the effect that changing the number of straddle carriers 
has on the result and the performance of the solver. The Genetic Algorithm were run on 2 2.8 
GHz Pentium 4 PCs with 512 Mb of RAM, while the Tabu Search and Tabu SA tests were 
run on 1.7 GHz Pentium 4 PCs with 512 Mb of RAM. The first test for the Tabu Search test 
cases were run on a 2.4 GHz Pentium 4 PC with 512 Mb, and due to the difference in speed to 
the rest of the Tabu Search tests, these test will be ignored when comparing CPU times. 
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Figure 2. Test Problem Layout 

Unfortunately, none of the solutions that were obtained during the tests satisfied all 
container departure time constraints, that is, there were some tardy containers. This was due 
to the fact the initial solutions were generated randomly and some of the containers arrived at 
the departure transfer station late. A similar problem also occurred in a previous research 
project, and it was improved by generating the initial solutions using a problem specific 
greedy generation heuristic. When a generation heuristic is implemented, it will have an 
algorithm similar to the simulation algorithm, however instead of allocating machines to 
containers, the locations will be checked for containers that can leave their current destination, 
and these would be allocated to the machines that can get them to their destination in the 
fastest time. The checks that were performed when deciding whether a job is valid would also 
have to be used in this heuristic. 

The Genetic Algorithm tests were run with the following parameters: 
 50 Generations 
 50 Chromosomes per generation 
 Single Point Crossover 
 Elitism of 10 solutions 
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 Probability of Crossover 80% 
 Probability of Mutation 1% 

The Tabu Search tests were run with the following parameters 
 100 Iterations 
 Tabu List Size – 25 mutations 
 Maximum Neighbourhood size – 25 Solutions 
 200 Initial Solutions 

The Tabu SA tests were run with the same parameters as the Tabu Search tests, with 
the additional cooling parameter set at 0.95 

Figures 3, 4 and 5 are graphs of the infeasibility for test 1 as it decreases over the 
iterations for the Genetic Algorithm, Tabu Search and Tabu Search/Simulated Annealing 
Hybrid techniques respectively. The plots for the other tests are omitted, but they demonstrate 
very similar behaviour to these plots. 

The results shown in these figures suggest that the Genetic Algorithm performs better 
than the other two solution techniques, as it manages to reduce the final solution infeasibility 
further from the initial solution infeasibility. The Genetic Algorithm initial solution 
infeasibility is higher than the Tabu Search and TS/SA Hybrid in most tests, since it only 
begins with 50 solutions in its initial iteration, while the other two begin with 200 solutions, 
and therefore they have a better chance of producing an initial solution with a smaller 
infeasibility. However, the GA manages to reduce the best infeasibility to below 200000 in 
most cases, and in fact, some of the tests that were run produced a final infeasibility below 
100000. The Tabu Search and TS/SA hybrid, on the other hand, could only reduce the 
infeasibility from around 400000 for the initial infeasibility to around 300000. This implies 
that the GA performs better in the large search space that this problem provides, and 
converges towards a solution more quickly within the large search space. The opposite was 
found with previous research, where the Tabu Search and TS/SA performed better within the 
smaller feasible region of that problem, as they are better at refining solutions that are already 
reasonably good. 
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Figure 3. GA Test Case 1 Results 

TS Test 1 Results
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Figure 4. TS Test Case 1 Results 

 

 10.15



Proceedings of the Second International Intelligent Logistics Systems Conference 2006         

 

TSSA Test 1 Results
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Figure 5. TabuSA hybrid Test Case 1 Results 

 

In all of the tests except GA Test 1, the tests that only used two straddle carriers had 
higher infeasibility values over the majority of the iterations, which suggests that changing the 
number of machines may have a minor affect on the infeasibility obtained. Above 4 machines, 
however, there is no discernable trend in the infeasibility obtained, so it is possible that this 
may be related to the number of transfer stations in the problem, which in this case is four. 
The reasoning behind this is that with more than 4 straddle carriers, there is at least one 
straddle carrier per transfer station, and therefore it is less likely that a container will be 
delivered to its destination late. In fact, having more straddle carriers than transfer stations 
may have a negative effect on the container tardiness, as straddle carriers may have to queue 
up to enter the transfer station. 

Figures 6, 7 and 8 are graphs of the cumulative CPU time for test 1 for the Genetic 
Algorithm, Tabu Search and Tabu Search/Simulated Annealing Hybrid techniques 
respectively. As before, the plots for the other tests are omitted, but they demonstrate very 
similar behaviour to these plots. 

The results in Figures 6, 7 and 8 indicate that the CPU time is strongly affected by the 
number of machines used in the problem. The relationship between the number of machines 
and the CPU time appears to be logarithmic, with the difference between CPU times 
decreases as the number of machines used increases. This can be explained by how the 
simulation works. It requires checks for a number of jobs for each available straddle carriers, 
and these checks are computationally expensive. The number of checks required increases as 
the number of straddle carrier increases, and therefore the CPU time will increase. 
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Figure 6. GA Test Case 1 Cumulative CPU Time 

TS Test 1 Cumulative CPU Times
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Figure 7. TS Test Case 1 Cumulative CPU Time 
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Figure 8. TSSA Test Case 1 Cumulative CPU Time 

 

The GA graphs have a constant gradient while the Tabu Search and TS/SA Hybrid 
graphs have an increasing gradient that is not constant. This is due to the fact the GA must 
simulate a constant number of solutions during every iteration, while the Tabu Search and 
TS/SA Hybrid may simulate differing number of solutions depending on the point around 
which they are generating a neighbourhood. The Tabu Search and TS/SA hybrid also have 
larger initial iteration CPU times than the Genetic Algorithm due to the fact that they must 
simulate 200 solutions as opposed to only 50 solutions. 

If the solution techniques were allowed to continue past the iterations that the tests 
were run for, they may have produced feasible solutions. However the time taken to compute 
this feasible solution by this method would take too much time, and finding a feasible solution 
is not guaranteed. Therefore, the generation heuristic mentioned earlier will have to be 
implemented before this program would be able to be used in practical problems. Once this 
heuristic is implemented, further tests will have to be performed to measure the performance 
of the three solution techniques, and the sensitivity of the best solutions to changes in the 
different input parameters. 

 

6.  CONCLUSION 
The aim of this paper was to model the problem of storing and handling containers 

within the storage area of the MMCT, and to develop a computer program that could solve the 
model for non-trivial problems. 

The model that was developed was simplified from what occurs in practice in order to 
focus on the main problems of storage allocation of containers, machine allocation to 
container jobs and rehandling of containers. The assumptions that were taken will have to be 
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removed in order for this model to be used in a practical application. However the model that 
was developed does contain the main constraints that will be required in a realistic model, 
such as the capacity constraints, the container constraints and machine constraints. 

The program that was developed does generate solutions for the model for non-trivial 
problems. Unfortunately, due to the initial solutions being generated randomly, these 
solutions do not satisfy all of the container departure constraints, and feasible solutions could 
not be obtained within the limited time frame that would be allowed in practice. This problem 
can be remedied by generating the initial solutions using a problem-specific generation 
heuristic that would generate feasible solutions, therefore allowing the solution techniques to 
concentrate on improving those feasible solutions. From the results that were obtained, the 
GA performed better than the TS and TS/SA Hybrid in obtaining solutions that were less 
infeasible. However from experience gained from a previous project, once feasible solutions 
are found, the TS and TS/SA Hybrid perform better in refining the feasible solutions. The 
generation heuristic should be implemented before the program should be used in practise, 
and further test should be run after this is completed to observe the performance of the 
solution techniques and to test the sensitivity of the solution to changes in the parameters, 
such as number of straddle carriers or maximum stack height. 

Future work that should be performed in this area of research and in particular on the 
model and program developed include: 
 Implementing the generation heuristic to ensure feasible solutions are found 
 Improving the model by removing the assumptions that were taken. For instance, other 

types of yard machines should be considered, such as gantry cranes and AGVs. Also, the 
paths between the locations in the storage area could be modelled in a more sophisticated 
to allow for more general storage area layouts and to take traffic into consideration. 

 Profiling of the code in order to optimise the sections that the program spends the most 
time executing, therefore reducing the overall computation time and thus producing more 
optimal solutions in a timely manner. 

 Parallelisation of the solution techniques to take advantage of new multi-core CPU 
technology, therefore allowing multiple solutions to be simulated at the same time and 
thus producing more optimal solutions in less time. 

 Integration of the refined model and program into a system that optimises the overall 
MMCT system. 
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